Product Specification AU OPTRONICS CORPORATION # (V) Preliminary Specifications() Final Specifications | Module | 15.0" WXGA Color TFT-LCD | |------------|--------------------------| | Model Name | M150EW01 V0(non-Glare) | | Customer Date | Approved by Date | |---|--------------------------| | | | | Checked &
Approved by | Prepared by | | | | | Note: This Specification is subject to change without notice. | AU Optronics corporation | document version 0.1 # Product Specification AU OPTRONICS CORPORATION # **Contents** | 1. | . Handling Precautions | 4 | |----|--|----| | | . General Description | | | | 2.1 General Specification. | | | | 2.2 Optical Characteristics | 6 | | 3. | . Functional Block Diagram | 10 | | 4. | . Absolute Maximum Ratings | 11 | | | 4.1 Absolute Ratings of TFT LCD Module | 11 | | | 4.2 Absolute Ratings of Backlight Unit | 11 | | | 4.3 Absolute Ratings of Environment | 11 | | 5. | . Electrical characteristics | 12 | | | 5.1 TFT LCD Module | 12 | | | 5.2 Backlight Unit | 13 | | 6. | . Signal Characteristic | | | | 6.1 Pixel Format Image | | | | 6.2 The input data format | | | | 6.3 Signal Description/Pin Assignment | | | | 6.4 Interface Timing | | | 7. | . Connector Description | 15 | | | 7.1 TFT LCD Module | 15 | | | 7.2 Backlight Unit | 15 | | | 7.3 Signal for Lamp connector | | | 8. | . Reliability Test | | # Product Specification AU OPTRONICS CORPORATION # **Record of Revision** | Version and Date | Page | Old description | New Description | Remark | |------------------|------|--------------------------------|-----------------|--------| | 0.1 2007/08/13 | AII | First Edition for AUO internal | | | | | | | | | 3/18 document version 0.1 #### AU OPTRONICS CORPORATION # 1. Handling Precautions - 1) Since front polarizer is easily damaged, pay attention not to scratch it. - 2) Be sure to turn off power supply when inserting or disconnecting from input connector. - 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spot. - 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth. - 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. - 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling. - 7) Do not open or modify the Module Assembly. - 8) Do not press the reflector sheet at the back of the module to any directions. - 9) In case if a Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the CCFL reflector edge. Instead, press at the far ends of the CCFL Reflector edge softly. Otherwise the TFT Module may be damaged. - 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module. - 11) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged. - 12) Cold cathode fluorescent lamp in LCD contains a small amount of mercury. Please follow local ordinances or regulations for disposal. - 13) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption. - 14) The LCD module is designed so that the CCFL in it is supplied by Limited Current Circuit (IEC60950 or UL1950). Do not connect the CCFL in Hazardous Voltage Circuit. document version 0.1 4/18 AU OPTRONICS CORPORATION # 2. General Description M150EW01 V0 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and backlight system. The screen format is intended to support the WXGA (1280(H) x 720(V)) screen and 262k colors (RGB 6-bits data driver). All input signals are LVDS interface compatible. Inverter of backlight is not included. # 2.1 General Specification | ltem | Unit | Specification | Remark | |---|----------------------|---------------------------------|-----------| | Screen Diagonal | [mm] | 381 | 15.0 inch | | Active Area | [mm] | 332.16(H) × 186.84(V) | | | Maximum Resolution | - | 1280x3(RGB) x 720 | | | Pixel Pitch | [mm] | 0.2595 | | | Pixel Arrangement | - | R.G.B. Vertical Stripe | | | Display Mode | - | TN, Normally White | | | White Luminance (Center) | [cd/m ²] | 200* | | | Contrast Ratio | - | 400:1 | | | Optical Response Time | [ms] | 8* | Tr+Tf | | Color Saturation | % | 45% | | | Nominal Input Voltage VDD | [voltage] | 3.3 | | | Power Consumption | [watt] | 14.4* | 2 CCFL | | Weight | [grams] | 1150* | | | Physical Size | [mm] | 354.1 (H) x 227.4 (V) x 12 (D)* | | | Electrical Interface | - | 1channel LVDS | | | Support Color | - | 16.7M (6bit+Hi-FRC) | | | Townselve Dance | [°C] | 0 ~ +50 | Operating | | Temperature Range | [°C] | -20 ~ +60 | Storage | | Surface Treatment | - | Anti-Glare | | | Viewing Angle | [°] | 90/50 | | | Color / Chromoticity Consulington (OIE) | [x] | 0.313* | +/-0.03 | | Color / Chromaticity Coordinates (CIE) | [y] | 0.329* | +/-0.03 | | Uniformity | [%] | 80* | | ^{*} based on engineer's estimation, and are subject to change w/o notice. document version 0.1 5/18 AU OPTRONICS CORPORATION # 2.2 Optical Characteristics The optical characteristics are measured under stable conditions at 25 °C (Room Temperature) : | Item | Unit | Conditions | Min. | Тур. | Max. | Note | |----------------------------------|----------------------|--------------------|-------|-------|-------|------| | White Luminance ICCFL=6.5mA | [cd/m ²] | | 160 | 200 | _ | 4 | | | | Horizontal (Right) | - | 45 | - | | | Viewing Angle | [dograp] | CR = 10 (Left) | - | 45 | - | 1 | | Viewing / trigic | [degree] | Vertical (Upper) | - | 15 | - | I | | | | CR = 10 (Lower) | - | 35 | - | | | Luminance Uniformity | [%] | 9 Points | 70% | 80% | | 2,3 | | CR: Contrast Ratio | | | 240 | 400 | _ | 4 | | Cross talk | [%] | | | | 4 | 5 | | | | Rising | - | 5 | | | | Response Time | [msec] | Falling | - | 3 | | 4,6 | | | | Rising + Falling | | 8 | | | | | | Red x | TBD | TBD | TBD | | | | | Red y | TBD | TBD | TBD | | | | | Green x | TBD | TBD | TBD | | | Color / Chromaticity Coordinates | | Green y | TBD | TBD | TBD | | | (CIE 1931) | | Blue x | TBD | TBD | TBD | 4 | | (6.2 1661) | | Blue y | TBD | TBD | TBD | | | | | White x | 0.283 | 0.313 | 0.343 | | | | | White y | 0.299 | 0.329 | 0.359 | | | Flicker | [dB] | | - | | -20 | 7 | Note 1. Definition of viewing angle Viewing angle is the measurement of contrast ratio \geq 10 and \geq 5, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle. document version 0.1 6/18 Note 2: 9 points position Note 3: The luminance uniformity of 9 points is defined by dividing the maximum luminance values by the minimum test point luminance $$\delta_{\text{W9}} = \frac{\text{Minimum Brightness of 9 points}}{\text{Maximum Brightness of 9 points}}$$ document version 0.1 #### Note 4: Measurement method The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room. Note 5: Definition of Cross Talk (CT) $$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$ Where Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂) Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂) 8/18 document version 0.1 #### AU OPTRONICS CORPORATION Note 6: Definition of response time: The output signals of photo detector are measured when the input signals are changed from "Full Black" to "Full White" (rising time), and from "Full White" to "Full Black" (falling time), respectively. The response time is interval between the 10% and 90% of amplitudes. Please refer to the figure as below. Note 7: Subchecker Pattern Method: Record dBV & DC value with (WESTAR)TRD-100 Flicker (dB) = $$20 \log \frac{AC \text{ Level(at 30 Hz)}}{DC \text{ Level}}$$ document version 0.1 9/18 AU OPTRONICS CORPORATION # 3. Functional Block Diagram The following diagram shows the functional block of the 15.4 inches wide Color TFT/LCD Module: document version 0.1 10/18 AU OPTRONICS CORPORATION # 4. Absolute Maximum Ratings Absolute maximum ratings of the module is as following: ### 4.1 Absolute Ratings of TFT LCD Module | Item | Symbol | Min | Max | Unit | Conditions | |-----------------|--------|------|------|--------|------------| | Logic/LCD Drive | Vin | -0.3 | +4.0 | [Volt] | Note 1,2 | ## 4.2 Absolute Ratings of Backlight Unit | Item | Symbol | Min | Max | Unit | Conditions | |--------------|--------|-----|-----|----------|------------| | CCFL Current | ICCFL | - | 7.5 | [mA] rms | Note 1,2 | # 4.3 Absolute Ratings of Environment | Item | Symbol | Min | Max | Unit | Conditions | |--------------------|--------|-----|-----|-------|------------| | Operating | TOP | 0 | +50 | [°C] | Note 3 | | Operation Humidity | HOP | 5 | 90 | [%RH] | Note 3 | | Storage | TST | -20 | +60 | [°C] | Note 3 | | Storage Humidity | HST | 5 | 90 | [%RH] | Note 3 | Note 1: At Ta (25°℃) Note 2: Permanent damage to the device may occur if exceed maximum values Note 3: For quality performance, please refer to AUO IIS(Incoming Inspection Standard). **Operating Range** Storage Range + AU OPTRONICS CORPORATION ### 5. Electrical characteristics ### 5.1 TFT LCD Module ## **5.1.1 Power Specification** Input power specifications are as follows: | Symble | Parameter | Min | Тур | Max | Units | Note | |--------|---|-----|-----|------|-------------|--------| | VDD | Logic/LCD Drive Voltage | 3.0 | 3.3 | 3.6 | [Volt] | | | PDD | VDD Power | | | TBD | [Watt] | Note 1 | | IDD | IDD Current | | 350 | 450 | [mA] | Note 1 | | IRush | Inrush Current | | | 2000 | [mA] | Note 2 | | VDDrp | Allowable
Logic/LCD Drive Ripple Voltage | | | 100 | [mV]
p-p | | Note 1: Maximum Measurement Condition: Black Patterm #### Note 2: Measure Condition Vin rising time 12/18 document version 0.1 AU OPTRONICS CORPORATION ### 5.1.2 Signal Electrical Characteristics Input signals shall be low or High-impedance state when VDD is off. It is recommended to refer the specifications of THC63LVDF84A(Thine Electronics Inc.) in detail. Signal electrical characteristics are as follows: | Parameter | Condition | Min | Max | Unit | |-----------|-------------------------|-------|-------|------| | | Differential Input High | | | | | Vth | Threshold (Vcm=+1.2V) | | 100 | [mV] | | | Differential Input Low | | | | | Vtl | Threshold (Vcm=+1.2V) | -100 | | [mV] | | Vcm | Differential Input | 1.125 | 4.075 | L/1 | | VCIII | Common Mode Voltage | 1.125 | 1.375 | [V] | Note: LVDS Signal Waveform # 5.2 Backlight Unit Parameter guideline for CCFL Inverter is under stable conditions at 25 °C (Room Temperature) ∶ | Parameter | Min | Тур | Max | Units | Condition | |---|-----|-----|-----|------------|------------| | CCFL Standard Current (ISCFL) | 7.0 | 7.5 | 8.0 | [mA] rms | Note 2 | | CCFL Operation current (IRCFL) | 3.0 | 8.0 | 8.0 | [mA] rms | Note 2 | | CCFL Frequency (FcFL) | 40 | 50 | 80 | [KHz] | Note 3,4,8 | | CCFL Ignition Voltage (VicFL, Ta= 0°C) | | | | [Volt] rms | Note 5 | | CCFL Ignition Voltage (VicFL, Ta= 25°C) | | | | [Volt] rms | Note 5 | | CCFL Voltage (VcFL) | | | | [Volt] rms | Note 6 | | CCFL Power consumption (Pcfl) | | | | [Watt] | Note 6 | document version 0.1 13/18 #### AU OPTRONICS CORPORATION |--| Note 1: Typ. are AUO recommended design points. - *1 All of characteristics listed are measured under the condition using the AUO test inverter. - *2 In case of using an inverter other than listed, it is recommended to check the inverter carefully. Sometimes, interfering noise stripes appear on the screen, and substandard luminance or flicker at low power may happen. - *3 In designing an inverter, it is suggested to check safety circuit very carefully. Impedance of CCFL, for instance, becomes more than 1 [M ohm] when CCFL is damaged. - *4 Generally, CCFL has some amount of delay time after applying kick-off voltage. It is recommended to keep on applying ignition voltage for 1 [Sec] until discharge. - *5 Reducing CCFL current increases CCFL discharge voltage and generally increases CCFL discharge frequency. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter. - Note 2: It should be employed the inverter which has "Duty Dimming", if IRCFL is less than 3mA. - Note 3: CCFL discharge frequency should be carefully determined to avoid interference between inverter and TFT LCD. - Note 4: The frequency range will not affect to lamp life and reliability characteristics. - Note 5: CCFL inverter should be able to give out a power that has a generating capacity of over 1290 voltage. Lamp units need 1290 voltage minimum for ignition. - Note 6: The variance of CCFL power consumption is ±10%. Calculator value for reference (ISCFL × VCFL × 2= PCFL) - Note 7: Definition of life: brightness becomes 50%. The typical life time of CCFL is under the condition at 6.5 mA lamp current. - Note 8: Requirement for system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It should help increase the lamp lifetime and reduce its leakage current. The frequency range will not affect to lamp lifetime and reliability characteristics. (Reference value) The rate of unsymmetrical of lamp lighting waveform is shown (Lamp current waveform and lamp voltagewaveform) at 5% or less. Asymmetrical : (\mid A \mid - \mid B \mid) / \mid C \mid \leq 5 % A: Lamp current or lamp voltage o-p of +side B: Lamp current or lamp voltage o-p of –side C: Max(A,B) this is bigger in A or B Recommendation lighting frequency : $50 \sim 60 \text{ KHz}$ document version 0.1 14/18 # 7. Connector Description Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components. ### 7.1 TFT LCD Module | Connector Name / Designation | For Signal Connector | |------------------------------|----------------------| | Manufacturer | JAE or compatible | | Type / Part Number | TBD | | Mating Housing/Part Number | TBD | # 7.2 Backlight Unit Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components. | Connector Name / Designation | For Lamp Connector | |------------------------------|--------------------| | Manufacturer | CviLux | | Type / Part Number | CP0502SL09 | | Mating Type / Part Number | CP0502P1ML0-LF | 7.3 Signal for Lamp connector | | Connector No. | Pin No. | Input | Color | Function | |-----------|---------------|---------|-------|-------------|--------------| | | Upper CN1 | 1 | Hot1 | Pink | High Voltage | | Upper CN1 | 2 | Cold1 | White | Low Voltage | | | | Connector No. | Pin No. | Input | Color | Function | |-----------|---------------|---------|-------|--------------|-------------| | Lower CN2 | 1 | Hot1 | Pink | High Voltage | | | | CNZ | 2 | Cold1 | White | Low Voltage | ## 8. Reliability Test | Items | Required Condition | Note | | |---|---|------|--| | Temperature Humidity Bias (THB) | Ta= 50℃, 80%RH, 300hours | | | | High Temperature Operation (HTO) | Ta= 50℃, 50%RH, 300hours | | | | Low Temperature Operation (LTO) | Ta= 0°C , 300hours | | | | High Temperature Storage (HTS) | Ta= 60°C , 300hours | | | | Low Temperature Storage (LTS) | Ta= -20°C, 300hours | | | | Vibration Test
(Non-operation) | Acceleration: 1.5 G
Wave: Random
Frequency: 10 - 200 - 10 Hz
Sweep: 30 Minutes each Axis (X, Y, Z) | | | | Acceleration: 50 G Shock Test (Non-operation) Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis) | | | | | Drop Test | Height: 60 cm, package test | | | | Thermal Shock Test (TST) | -20°C/30min, 60°C/30min, 100 cycles | 1 | | | On/Off Test | On/10sec, Off/10sec, 30,000 cycles | | | | ESD (Electro Static Discharge) | Contact Discharge: \pm 8KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point. | 2 | | | LOD (Licetio Static Discharge) | Air Discharge: \pm 15KV, 150pF(330 Ω) 1sec 8 points, 25 times/ point. | | | | Altitude Test | Operation:10,000 ft
Non-Operation:30,000 ft | | | Note 1: The TFT-LCD module will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C, and back again. Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on. Note 2: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost. Self-recoverable. No hardware failures. # **PIN Assignment** | Pin No. | Symbol | Function | Pin No. | Symbol | Function | |---------|--------|-------------|---------|--------|--------------------| | 1 | VDD | 3.3V | 11 | RXIN2- | LVDS Signal | | 2 | VDD | 3.3V | 12 | RXIN2+ | LVDS Signal | | 3 | VSS | Ground | 13 | VSS | Ground | | 4 | VSS | Ground | 14 | RXCLK- | LVDS Signal | | 5 | RXIN0- | LVDS Signal | 15 | RXCLK+ | LVDS Signal | | 6 | RXIN0+ | LVDS Signal | 16 | VSS | Ground | | 7 | VSS | Ground | 17 | RXIN3- | LVDS Signal | | 8 | RXIN1- | LVDS Signal | 18 | RXIN3+ | LVDS Signal | | 9 | RXIN1+ | LVDS Signal | 19 | AGMODE | Active High/Ground | | 10 | VSS | Ground | 20 | HVS | Active High/Ground |