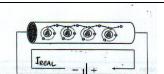
EXPERIÊNCIA 1 – LABORATÓRIO DE CIRCUITOS ELÉTRICOS I APRESENTAÇÃO DO LABORATÓRIO, ANALOGIA ENTRE HIDRÁULICA E ELETRICIDADE, FONTES, PLACA PROTOBOARD, RESISTORES, MEDIÇÃO DE RESISTÊNCIA, TOLERÂNCIA, GERADORES DE SINAIS, OSCILOSCÓPIO.

1.Objetivos

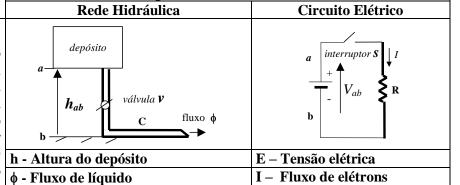

Apresentação do laboratório e tópicos práticos básicos de circuitos

2. Material Necessário

Lâmpada de teste néon, multímetro, osciloscópio, gerador de sinais, pilha, resistores de fio e filme ≠s potências

Introdução Teórica - Sentido da Corrente Elétrica

a) Sentido Real



b) Sentido Convencional – Aspecto Didático

Na literatura moderna é adotado o sentido convencional em função de facilitar a analogia dos circuitos elétricos com as redes hidráulicas.

Analogia com Sistemas Hidráulicos

A corrente elétrica é um fluxo ordenado de elétrons através de um condutor. Em função de sua mobilidade o sentido real da corrente vai do potencial negativo ao positivo, uma vez que é formada por um movimento de elétrons. O sentido eletrônico ou real é adotado em literatura mais antiga.

4. Fontes de Alimentação de Tensão Contínua

a) Normal

As fontes de tensão contínua proporcionam uma tensão de valor constante ao longo de tempo. Apresentam polaridade, ou seja um terminal com excesso de elétrons em relação ao outro. O terminal positivo é identificado pela cor vermelha e o terminal negativo pela cor preta. Os terminais verdes são conectados a carcaça do equipamento, com a finalidade de aterramento, que serve para proteção e redução de ruídos na operação da mesma.

V - Válvula

C - Cano

b) Simétrica


Na alimentação de alguns circuitos elétricos, contendo amplificadores operacionais são necessárias fontes simétricas.

$$-\operatorname{Vec} \longrightarrow + \operatorname{Vec}$$

S - Interruptor

R - Resistor

Tarefa 1

3.Placas Protoboard

Verificar e descrever que tipo de ajustes são proporcionados pelas fontes de tensão disponibilizadas


Tarefa 2

Fazer um mapa de conexões da placa protoboard recebida utilizando dois fios de conexão e um multímetro.

5. Conceito de Resistência Elétrica - R

A expressão da resistência elétrica R é a seguinte :

$$R = \rho \cdot \frac{\ell}{A} = \frac{V}{I}$$

R – Resistência elétrica Ω [Ohm]

 ℓ - Comprimento do condutor m

A – área da secção transversal m²

 ρ - resistividade do material $\,\Omega$ m

A resistência elétrica é um dispositivo elétrico que recebe a energia elétrica para produzir calor pelo efeito Joule.

6. Principais Tipos de Resistores

RESISTORES DE FILME

Identificação de Resistores - Código de Cores

Tuchinicação de l	Kesisioi es - Couigo	o de Cores		
COR	1ª LISTA	2ª LISTA	3ª LISTA	4ª LISTA
preto	0	0	$x10^0$	TOLERÂNCIA
marrom	1	1	x10 ¹	±1%
vermelho	2	2	x10 ²	±2%
laranja	3	3	x10 ³	
amarelo	4	4	x10 ⁴	
verde	5	5	$x10^5$	
azul	6	6	x10 ⁶	
violeta	7	7	$x10^7$	
cinza	8	8	x10 ⁸	
branco	9	9	x10 ⁹	
ouro	X	X	dividido por 10	±5%
prata	X	X	dividido por 100	±10%
sem cor	X	X	X	±20%

Escala de Valores de Resistores de Filme Comerciais em Ω

Não são comercializados resistores de qualquer valor.

Estão disponíveis comercialmente, resistências com valores padrão de tolerância 20%.

5%	10	11	12	13	15	16	18	20	22	24	27	30	33	36	39	43	47	51	56	62	68	75	82	91
10%	10		12		15		18		22		27		33		39		47		56		68		82	
20%	10				15				22				33				47				68			

São encontrados os valores indicados nas tabelas divididos por 10 ou multiplicados por potências de 10

Potências Comerciais Disponíveis – Resistores de Filme

As potências também são padronizadas

1/8W	1/4W	1/2W	1W	2W

Tarefa 3

Representar os resistores recebidos indicando as cores das listas:

- a)Indicar seus valores utilizando o código de cores, indicar sua tolerância e dizer o que significa.
- b)Medir o valor do resistor com o multímetro.
- c)Indicar sua potência, analisando o tamanho dos mesmos
- d)Seria possível utilizar um resistor de 1W produzindo 0,8W?

RESISTORES DE FIO (Verdes)

	在16年10年代的《中国》代表的《大学》(1914年19年7月19日)(1914年19年7月19日)(1914年19年7月19日)(1914年19年7日)(1914年19年1日)(1914年19年1日)(1914年19年1日)(1914年19年1日)(1914年19年1日)(1914年1914年19年1日)(1914年1													
	5W – valores comerciais em Ω													
1,0 1,2 10 47 270 470 1000 1500 2700 4700 6800										10000				
	10W – valores comerciais em Ω													
	1,0	10	47	100	270	330	390	1000	2700	4700	8200	10000		

Tarefa 4

Para os resistores de fio recebidos:

- a) Indicar seus valores
- b) Indicar sua potência, analisando o tamanho dos mesmos

Tarefa 5

Fotografar uma associação série de dois resistores alimentada por uma fonte normal em uma protoboard.

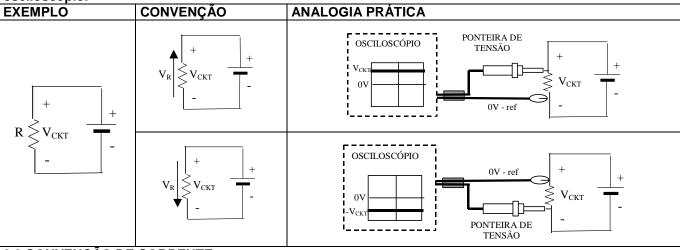
7. Geradores de Sinais Disponíveis no Laboratório

Os geradores de sinais proporcionam diferentes formas de onda, importantes no estudo de circuitos elétricos

8. Osciloscópio e Ponteiras Disponíveis

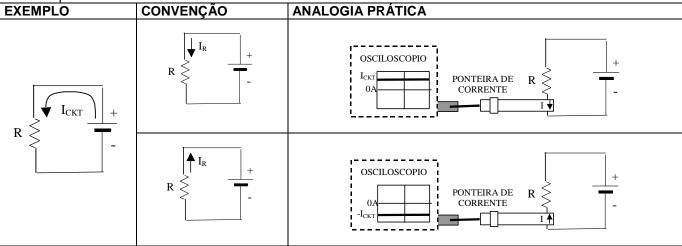
A ponteira de tensão observa diferença de potencial ou tensão verificada **a cada instante (instantânea)** entre dois pontos. No exemplo a ponteira mede a **tensão Vab**, ou a diferença de potencial de **a** em relação a **b**.

Ponteira de Corrente



A ponteira de corrente permite visualizar a corrente **instantânea** em um circuito, no sentido da marcação sobre a mesma.

Ao representar as formas de onda teóricas é importante considerar de que forma elas estão sendo observadas sobre o circuito. Para facilitar a compreensão, uma analogia física é efetuada entre as convenções teóricas e o efeito do posicionamento das ponteiras de um osciloscópio na visualização da forma de onda observada.


8.1. CONVENÇÃO DE TENSÃO

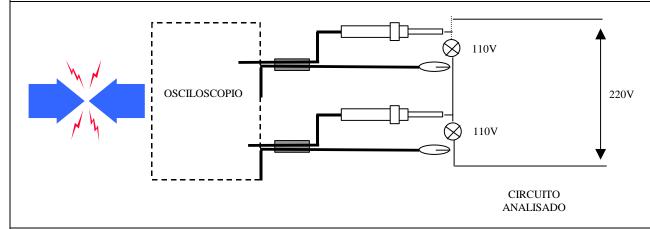
A convenção de tensão sobre o circuito pode ser interpretada como sendo a ponteira de tensão de um osciloscópio.

8.2 CONVENÇÃO DE CORRENTE

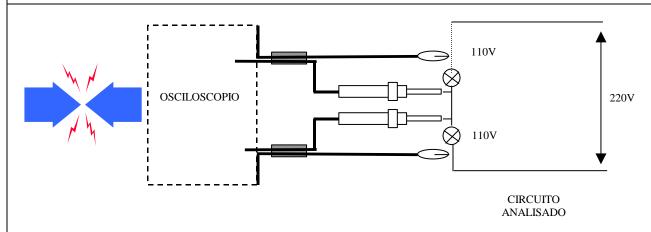
A convenção de corrente sobre um circuito pode ser interpretada como sendo a ponteira de corrente de um osciloscópio.

Tarefa 6 – Medição com o osciloscópio

Medir e salvar a forma de onda de tensão de uma pilha alterando o sentido das ponteiras. Medir e salvar uma forma de onda senoidal 1kHz obtida a partir de um gerador de sinais.


8.3. CUIDADOS NA MEDIÇÃO COM DUAS PONTEIRAS DE TENSÃO

EVITANDO CURTO ENTRE DUAS PONTEIRAS DE REFERÊNCIA

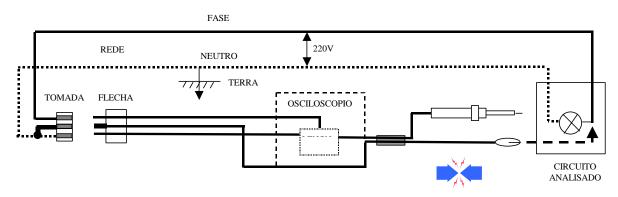

As ponteiras de referência são interligadas entre si e com o pino de terra do cabo de alimentação.

EXEMPLOS

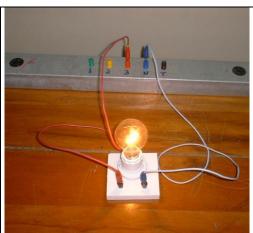
a) Esta configuração aplicará 220V sobre a lâmpada superior.

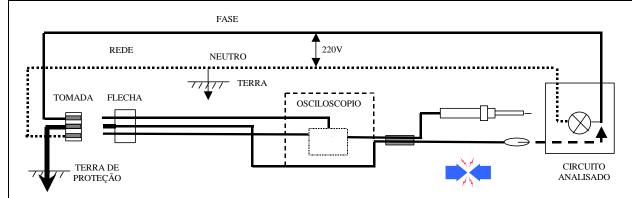
b) Esta configuração provocará um curto sobre a rede

c) As duas garras no mesmo ponto ou retirar uma delas

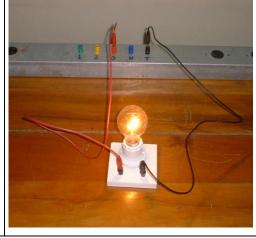


Tarefa 7


Com o osciloscópio desconectado da rede, verificar e explicar o resultado obtido quando se verifica a continuidade entre as garras de referência do osciloscópio utilizando um multímetro.

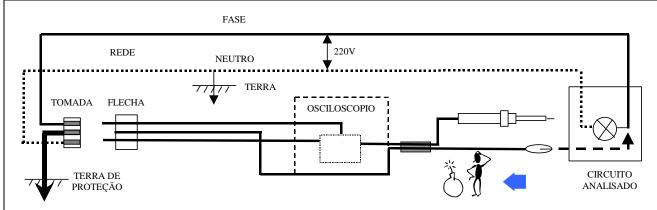

8.4.CUIDADOS COM OSCILOSCÓPIO AO MEDIR CIRCUITOS ALIMENTADOS DIRETAMENTE DA REDE

DANOS CAUSADOS SOBRE A PONTEIRA DE REFERÊNCIA



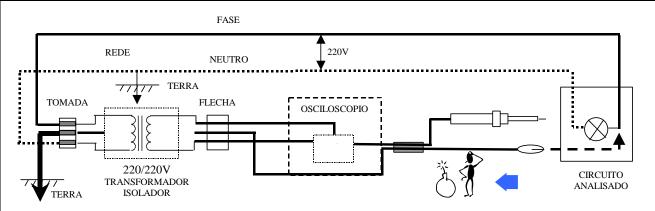
Poderá ser aplicada a diferença de potencial faseneutro sobre o fio e ponteira de referência (garra) do osciloscópio.

Em função do neutro ser aterrado, poderá ser aplicada a diferença de potencial fase-terra sobre o fio e a ponteira de referência (garra) do osciloscópio.

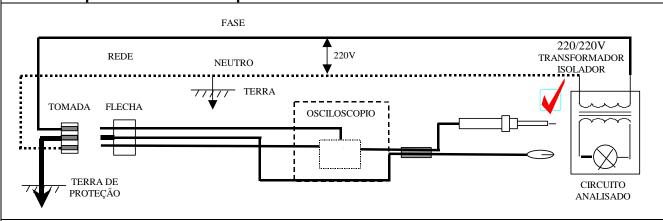

Tarefa 8

- a) Como é identificado o fio fase da rede e qual a sua principal característica ?
- b)Com o osciloscópio desconectado da rede, verificar e explicar o resultado obtido quando se mede a continuidade entre as garras de referência do osciloscópio e o terminal de aterramento de sua flecha utilizando um multímetro.

8.5.EVITANDO CURTO SOBRE AS PONTEIRAS DE REFERÊNCIA DO OSCILOSCÓPIO


a) Corte do pino de terra do cabo de alimentação do osciloscópio

Osciloscópio protegido, mas o operador deve cuidar pois ao se conectar a garra no fase a carcaça do osciloscópio estará energizada no potencial fase.


b) Transformador isolador intercalado entre o cabo de alimentação

Osciloscópio protegido, mas o operador deve cuidar pois ao se conectar a garra no fase a carcaça do osciloscópio estará energizada no potencial fase.

c) Transformador isolador na medida e osciloscópio aterrado

Osciloscópio e operador protegidos, porém o transformador deve ter potência suficiente para alimentar o dispositivo analisado.

Tarefa 9

Explique quais são as duas principais vantagens do circuito acima.